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ABSTRACT

We investigate what, if any, benefits arise from employing hybrid algorithm-crowdsourcing ap-
proaches over conventional approaches of relying exclusively on algorithms or crowds to annotate
images. We introduce a framework that enables users to investigate different hybrid workflows for
three popular image analysis tasks: image classification, object detection, and image captioning.
Three hybrid approaches are included that are based on having workers: (i) verify predicted labels,
(ii) correct predicted labels, and (iii) annotate images for which algorithms have low confidence in
their predictions. Deep learning algorithms are employed in these workflows since they offer high
performance for image annotation tasks. Each workflow is evaluated with respect to annotation
quality and worker time to completion on images coming from three diverse datasets (i.e., VOC,
MSCOCO, VizWiz). Inspired by our findings, we offer recommendations regarding when and how
to employ deep learning with crowdsourcing to achieve desired quality and efficiency for image
annotation.

1. INTRODUCTION
Recent successes of scalable image analysis tools are triggering an exciting rise in the number of ser-
vices that benefit society. For example, systems that create image captions are empowering people
with visual impairments to quickly discover what contents are shown in online images (MacLeod
et al., 2017). Systems that automatically recognize what objects are in images (e.g., horses, cars,
chairs) are enabling online search algorithms to more quickly and accurately return images that
show the object a user is searching for. Systems that can localize objects assist people monitoring
surveillance videos to spot anomalous (and so suspicious) content (Sodemann et al., 2012). Such
examples merely represent the tip of the iceberg of innovative intelligent services that could be
deployed with access to accurate, scalable image annotation systems.

https://doi.org/10.15346/hc.v8i2.121
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Figure 1. Given an image, valuable information to learn about it includes: (i) what objects are
present (image classification), (ii) where each object is located (object detection), and (iii) a

textual description of it (image captioning). Our goal is to examine what, if any, benefit arises by
completing these tasks using hybrid systems that employ the efforts of deep learning algorithms
and crowd workers together rather than the status quo of relying on human or algorithms alone.

A challenge for designing image annotation systems is building them to be inexpensive, fast, and
accurate for all image content (i.e., generalizable). While automated options have been preferred for
their speed, scalability, and inexpense, they often fail to offer the consistently accurate annotations
humans can deliver. Accordingly, system designers have experimented with numerous workflows
that demonstrate how to decompose an image analysis task to take advantage of the aforemen-
tioned benefits of algorithms while embracing crowdsourced workers to ensure accuracy (Cheng
and Bernstein, 2015; Guo, 2018; Gurari et al., 2016; Hara et al., 2014; Laput et al., 2015; Wigness
et al., 2015; Zhang et al., 2013). However, such workflows have only been studied for specific
applications. The limited reports of success for such workflows begs a question of how well such
hybrid algorithm-crowd workflows would generalize to different image analysis tasks and images.

The goal for this work is to establish generalizable best practices for employing hybrid algorithm-
crowd partnerships to analyze images. We propose a framework to examine the effectiveness of
multiple hybrid algorithm - crowd workflows to annotate images across different tasks, datasets and
algorithms. To do so, we employ this framework to benchmark these workflows for three distinct
tasks, specifically image captioning, image classification, and object detection (as exemplified in
Figure 1). We evaluate various implementations of this framework on images taken by sighted
and blind people. We use deep learning algorithms in these workflows since they offer state-of-art
performance for image annotation. Deep learning is a form of artificial intelligence that learns to
recognize from a large number of examples the meaningful patterns for making predictions. We re-
port the trade-offs between annotation quality and required human effort (i.e., time spent) for each
workflow in order to offer generalizable conclusions about the strengths and weaknesses of the vari-
ous workflows. Such information is critical to enable system designers to make informed decisions,
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based on their in-house demands (e.g., time constraints, human effort constraints, computational
constraints), regarding what is the best approach for their data analysis needs.

2. RELATED WORKS
Image Analysis Methods The pioneering crowdsourcing work demonstrated it is possible to
efficiently annotate massive datasets with anonymous crowd workers, including to classify what
objects are present (Von Ahn and Dabbish, 2004), locate the objects in images (Von Ahn et al.,
2006b), and describe images (Von Ahn et al., 2006a). More recently, deep learning methods have
emerged that can achieve human performance for a small set of tasks such as classifying and de-
tecting pre-specified objects (e.g., 1000 categories chosen for the ImageNet dataset (Russakovsky
et al., 2015)). However, little is known about the general-purpose value of solutions that lie in be-
tween these two extremes of relying exclusively on either crowds or algorithms. Accordingly, we
benchmark methods across different tasks, datasets, and algorithms to provide generalizable design
recommendations for when and how to employ deep learning with crowdsourcing to achieve desired
quality-efficiency trade-offs.
Design-Time Algorithm-Crowd Partnerships Numerous papers have proposed algorithm-crowd
partnerships to improve the utility of machine learning algorithms with less human effort. This is
because large training datasets are often needed to achieve strong predictive performance. Solu-
tions show how to intelligently solicit as few annotations from humans as possible to yield a desired
performance from machine learning solutions (Laput et al., 2015; Wigness et al., 2015). Our work
differs in that we aim to examine effective partnerships that minimize human effort at run-time
rather than focus on how to more efficiently train fully-automated solutions.
Run-Time Algorithm-Crowd Partnerships Numerous papers examine algorithm-crowd part-
nerships which supply human involvement to compensate for algorithms’ weaknesses at run-time.
Solutions have been explored for specific tasks such as finding answers to questions (Bernstein
et al., 2012), detecting things in images (Hara et al., 2013), assistive navigation (Guo, 2018), im-
age captioning (Guinness et al., 2018), and more (Rzeszotarski and Kittur, 2012; Song et al., 2019;
Cheng and Bernstein, 2015; Gurari et al., 2016; Hara et al., 2014; Konyushkova et al., 2017; Lofi
and El Maarry, 2014; Sabou et al., 2013; Salisbury et al., 2017). Despite that such solutions can
successfully leverage the independent strengths of algorithms and crowds together, a person must
typically invest substantial effort to establish which hybrid solution is suitable for their purposes.
Accordingly, we analyze the general benefit of several hybrid workflows that are popular for image
annotation: (1) algorithm verification, which was previously used for object detection (Hara et al.,
2014; Konyushkova et al., 2017), (2) algorithm correction, which was previously used for image
captioning (Salisbury et al., 2018), and (3) replacing low confidence results from algorithms, which
was previously used for object detection (Gurari et al., 2016; Hara et al., 2014). We benchmark these
workflows for three tasks using multiple datasets and deep learning algorithms to better understand
the general (dis)advantages of each.
Crowdsourcing Workflows While few papers explicitly define the term workflow, the predom-
inant implicit assumption is that it refers to a multi-stage process of decomposing a complex task
into simpler micro-tasks, as explicitly defined by Kittur et al. (Kittur et al., 2013). Some work has
offered generalized principles for designing a workflow; e.g., discussions of specific patterns such
as generate-apply-edit (Chilton et al., 2013) or summaries of many patterns including fix-verify-
pattern (Quinn and Bederson, 2011; Sabou et al., 2013) . More recently, some works have designed
workflows that integrate both human and algorithm effort into hybrid architectures (Lasecki et al.,



Human Computation (2021) 8:2 79

Figure 2. Summary of the image annotation workflows in our framework. Given an image,
either (i) workers produce annotations (Manual annotation), (ii) workers verify labels predicted

by algorithms for correctness with negative outcomes sent for manual annotation by workers
(Verification + Manual annotation), (iii) workers verify and then correct any inaccurate

algorithm-predicted labels (Correction), or (iv) algorithms predict labels with confidence scores
in their predictions and images with low confidence predictions (below a pre-defined threshold)

are sent for manual annotation by workers (Confidence threshold + Manual annotation).

2014; Lofi and El Maarry, 2014; Lundgard et al., 2018). Our work most closely relates to works
that aim to offer concrete guidance to users on which is the most appropriate workflow for their pur-
poses (Weld and Dai, 2011; Lin et al., 2012; Gurari et al., 2016). We explore three different hybrid
workflows that integrate the efforts of crowds with algorithms on three significant image annotation
tasks, and discuss the impact of these workflows in terms of speed, quality, and costs involved.

3. METHODS
We propose a modular framework that supports three distinct hybrid workflows for partnering
crowds and algorithms to collaboratively annotate images. We designed this framework to support
three popular image annotation tasks: image classification, object detection, and image captioning.
We first describe the three tasks and then define each hybrid workflow. Finally, we explain our
implementation of the crowdsourcing systems and deep learning systems used for each task.

3.1. Annotation Tasks
Our framework enables users to investigate different workflows with respect to three popular image
analysis tasks: image classification, object detection, and image captioning. In what follows, we
describe these tasks and exemplify the output from executing each task in Figure 3:
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Figure 3. Illustration of the three image annotation tasks - image classification, object detection
and image captioning. As shown, object classification yields a list of class labels, object detection
yields rectangular boundaries (i.e., bounding boxes) demarcating where objects are located, and

image captioning yields a description of the image. Also shown are screen-shots of the user
interfaces we employed to collect manual annotations from crowd workers.

Image classification: the task is to list labels that indicate what objects are present in a given image.
This is valuable for many applications including content based image search and retrieval (e.g.
Google Images), assisting visually-impaired individuals to recognize objects in their visual
surroundings (Kacorri et al., 2017), as well as fine-grained identification of cars and food
items (Zhou and Lin, 2016).

Object detection: the task is to locate each object present in a given image with a bounding rect-
angle. This is valuable for many applications including self-driving cars for environment
understanding (e.g. Waymo, Uber), surveillance applications (Cohen and Medioni, 1999),
face detection to automatically tag pictures (e.g. Facebook), and activity recognition scenar-
ios such as tele-rehabilitation (Pirsiavash and Ramanan, 2012).

Image captioning: the task is to generate a text description of an image. Valuable applications
include correlating varied multimedia sources (Pan et al., 2004) and assisting people with
visual impairments to interpret images (Kacorri et al., 2017; MacLeod et al., 2017).
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3.2. Annotation Workflows
For each task, we implement the following four annotation workflows that employ different levels
of effort from crowd workers and deep learning models:

Manual annotation: workers label images from scratch without any input or assistance from a
deep learning algorithm. This approach is in line with conventional approaches used previ-
ously to create large-scale datasets that describe images (Chen et al., 2015; Von Ahn et al.,
2006a), classify objects (Deng et al., 2009; Von Ahn and Dabbish, 2004), and locate objects
in images (Lin et al., 2014; Von Ahn et al., 2006b).

Verification: a deep learning system generates labels which are then verified by workers as being
correct or not. Specifically, workers answer simple yes or no questions. Verification methods
have been used in numerous machine learning pipelines (Hara et al., 2014; Konyushkova
et al., 2017; Krasin et al., 2017; Papadopoulos et al., 2016). It is important to note that, by
employing verification, we do not obtain a fully annotated dataset since negatively verified
images still require correct labels. Images which are negatively marked after verification are
fed back through the manual annotation pipeline.

Correction: labels are again predicted by a deep learning system. However, in addition to veri-
fying a prediction, a worker is also tasked with fixing inaccurate annotations by modifying
the algorithm-generated results. This approach is explored by (Gaur et al., 2016) and imple-
mented in (Harrington and Vanderheiden, 2013; Huang et al., 2017; Salisbury et al., 2018).

Confidence threshold: a deep learning system that generates results also outputs confidences value
(between 0 and 1) in its predictions. Predictions for which the confidence value is above a pre-
defined threshold value are kept, and all remaining images are fed back through the manual
annotation pipeline. This approach is explored in (Gurari et al., 2016; Hara et al., 2014).

The aforementioned workflows are visualized in Figure 2. As illustrated, these workflows offer var-
ious ways to decompose data annotation into micro-tasks that can be distributed between algorithms
and crowd workers.

3.3. Crowdsourcing Systems
We design a “Human Intelligence Task” (i.e., HIT) to support the crowdsourcing effort involved
with each workflow for each of the three image annotation tasks. In total, we designed nine crowd-
sourcing systems. All code will be shared publicly upon publication (https://anonymous-link). We
summarize the system designs below.

Image classification: In the manual annotation HIT, a worker identifies what objects are present
in a given image by selecting choices from a pre-set list of 20 object categories. In the
verification HIT, a worker is shown the top object category predictions from a deep learning
model for a given image and must indicate whether each prediction is correct or not. The
correction HIT is identical to the verification HIT, except a worker can additionally select
from the list which categories are present in the image but were missed by the model as well
as remove erroneous labels predicted by the deep learning model.

Object detection: In the manual annotation HIT, a worker is given an image and an object type and
must draw a tight bounding box over an instance of that object. In the verification HIT, the
worker is shown both a bounding box and corresponding object category prediction from a
deep learning model and must indicate whether the bounding box indeed covers an instance of
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Figure 4. Example images from the three datasets used in our experiments to illustrate the
diversity of content: (a) VOC2012, (b) MSCOCO, and (c) VizWiz. These images were taken by

both people who are sighted (a, b) and blind (c). Each dataset has distinct properties, varying in
terms of scene complexity (e.g., typically VOC2012 is simple and MSCOCO is complex), location
of objects (e.g., objects often are centered in VOC2012), and image quality (e.g., many images in

VizWiz are lower quality).

the predicted object category. The correction HIT is identical to the verification HIT, except
workers can additionally modify the bounding box or modify the category label.

Image captioning: In the manual annotation HIT, workers must manually annotate the image from
scratch by typing in a textual description. In the verification HIT, the worker is shown a
predicted caption/description for a given image and answers a simple yes or no question. The
correction HIT is identical to the verification HIT, though workers can additionally provide
an updated caption if applicable.

3.4. Deep Learning Systems
We utilize modern deep learning models pre-trained on large-scale, public datasets in our workflows.
Such models learned complex representations by training from many labeled examples. We describe
our model choices below.

Image classification: We employ pre-trained models which have achieved high performance in
benchmarking challenges such as the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al., 2015) and MSCOCO Challenge (Lin et al., 2014). We include
the following three architectures - VGG (ILSVRC 2014 localization winner and classification
runner-up), ResNet (ILSVRC 2015 and MSCOCO 2015 winner), and Google Inception
(ILSVRC 2015 top ranked unofficial). All implementations are pre-trained on the ILSVRC
2012 training dataset and are available in TensorFlow1.

Object detection: We incorporate support for the recent high performing architecture Faster R-
CNN (ILSCRC 2015 and MSCOCO 2015 top ranked), which is open source and pre-trained
on ILSVRC dataset (with fine-tuning on VOC2007 dataset). VOC2012 and MSCOCO datasets
have no overlap with VOC2007, hence this model can be used. We also employ SSD (Single

1Though object detection models provide category label outputs as well, we choose to include models
designed specifically for object classification to avoid accruing the extra computational complexity required
for object detection.
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Shot Detector), however we only use it with the MSCOCO dataset since it is trained with
fine-tuning on the VOC 2007 and 2012 datasets.

Image captioning: We integrate support for Microsoft (MS) Azure’s computer vision API, a cloud
based service that allows users to run complex algorithms without worrying about computa-
tional resources required. We employ its API support for image captioning.

4. EXPERIMENTAL DESIGN
We now describe our studies for examining what, if any, advantages arise by employing deep learn-
ing as a part of the crowdsourcing pipeline for image annotation. We focus on the following research
questions: (1) Can the annotation quality from hybrid approaches match the quality from human an-
notations? and (2) What are the trade-offs between quality and human effort for different annotation
protocols?

4.1. Datasets
We conduct our studies on 500 images coming from three diverse publicly-available datasets. We
chose images taken by both sighted (Everingham et al., 2010; Lin et al., 2014) and blind people (Gu-
rari et al., 2018) in order to address the interests from different plausible users of image annotation
systems. We also chose images from well-established computer vision datasets so that we could
have access to ground truth annotations for evaluation for the various tasks we are studying in this
paper. We describe each dataset below and show examples from each in Figure 4.

Pascal VOC Challenge dataset (VOC2012) (Everingham et al., 2010): This dataset emerged as
the first widely-accepted benchmarking dataset in the computer vision community for object clas-
sification and detection. The dataset consists of images showing 20 object categories with some
variability in object size, orientation, pose, illumination, position, and occlusion. We randomly
sample 10 images from each of the 20 categories present in VOC2012: airplane, bicycle, bird,
boat, bottle, bus, car, cat, chair, cow, dog, horse, motorcycle, person, potted plant/flower pot, sheep,
sofa/couch, table, train, and TV/television. Images are sampled from the training set, resulting in a
total of 200 instances. This dataset comes with ground truth annotations for the image classification
and object detection tasks.

MSCOCO dataset (MSCOCO) (Lin et al., 2014): This dataset was designed to overcome the
simplicity of VOC2012 by providing more complex scenes that show multiple objects. Objects
typically vary in scale and location (i.e., non-centered), and may be partially obscured by other
objects or the environment. While the total dataset consists of 80 categories, in our experiments,
we use a subset of the dataset that contains the same object categories as VOC2012. We again
randomly sample 10 images from each of the 20 categories listed above, resulting in another set
of 200 images. Because these images depict complex scenes, objects can co-occur, potentially
resulting in some categories having more than 10 instances. For instance, an image sampled from
the “horse” category may also contain a “person" riding the horse. This dataset comes with ground
truth for the image classification, object detection, and image captioning tasks.

VizWiz dataset (Gurari et al., 2018): This dataset contains images taken by blind photographers
who used the cameras on their mobile phones. It is unique in that each image is captured by a
blind person who also recorded a spoken question and submitted those to crowd workers to receive
an answer. As such, images typically represent familiar everyday objects the people want to learn
about. Furthermore, images may be poorly framed, improperly focused, or blurry since blind people
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cannot verify the quality of the images. Because VizWiz is not designed with ground truth for
the three tasks we examine, we created it in-house. To do so, we first selected images from the
training set which had sufficiently high quality to recognize the content, and then manually selected
100 images which contained objects from the selected 20 object categories used for VOC2012
and MSCOCO. Next, to establish ground truth for image classification, we followed the manual
annotation and correction methods described previously. For image captioning, since blind users
commonly asked generic questions to learn what is in an image (Brady et al., 2013), we used the 10
answers provided per image in the VizWiz dataset as a proxy for image captions.

4.2. Crowdsourcing Set-Up
We employ crowd workers from Amazon Mechanical Turk (AMT), an online platform where re-
questers post tasks for workers to complete in exchange for pay. To reduce concerns about quality,
we only accepted workers who already completed more than 500 Human Intelligence Tasks (i.e.,
HITs) and had an acceptance rate of greater than 92%. Towards collecting high quality annotations,
we collected redundant annotations. Specifically, we assigned each HIT to three workers. We paid
$0.20 for completion of each HIT, where each HIT included 10 images.2

We measured human effort by adapting the freely-available MmmTurkey framework (Dang et al.,
2016) to collect on-focus task completion time, total number of clicks, and mouse movements.
While all behavioral information will be publicly-shared upon publication to support future work,
we analyze task completion time in this work.

To evaluate the quality of results obtained using the different hybrid workflows as well as the status
quos of manual annotation and algorithms, we employ traditional evaluation metrics for each task
as described below.

4.3. Study 1: Image Classification
We evaluate classification quality using the standard technique (Deng et al., 2009) of computing the
percentage of exact matches between the output of an annotation protocol and the ground truth clas-
sifications. The annotation is correct when the aggregated object categories match all those present
in the corresponding ground truth labels. For crowdsourced annotations, we aggregate the three
workers’ submissions into a single annotation using majority voting, i.e., a category is aggregated
if at least two of the three workers agreed it was present. For algorithms, to minimize concerns
that our analysis is over-fitting to the behaviors of a particular algorithm, we evaluate each hybrid
workflow with three different deep learning models—VGG, ResNet, and Inception. Consequently,
we evaluate nine hybrid algorithm-crowdsourcing workflows (i.e., 3 workflows x 3 deep learning
models). For the confidence threshold workflow, we set the threshold for model confidence to 0.65
(0 being least and 1 being most confident) to emulate the majority vote confidence required from
crowdsourcing (i.e., agreement by 2 of 3 people). We apply a distribution-free bootstrap test (Efron
and Tibshirani, 1994) to compare the results for each benchmarked method to those for manual an-
notation with respect to quality as well as the time taken to complete the annotations. This statistical
test resamples the results with replacement multiple times to create simulated results. We resample
10,000 times and deem a method to be significantly different when the p-value < 0.05.

2This payment yields a $9 per hour wage, as the median completion time for all HITs was 80 seconds.
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4.4. Study 2: Object Detection
We evaluate detection quality with mean IOU (intersection over union) of the bounding boxes, i.e.,
the fraction of pixel overlap between the bounding boxes of the same object category produced
by the workflow and the ground truth. Following prior work (Everingham et al., 2010), positive
detections have IOU scores greater than 0.5. To avoid inadvertently biasing our findings to the per-
formance of a single algorithm, we evaluate each hybrid workflow with two deep learning models—
Faster RCNN and SSD. Consequently, we evaluate six hybrid algorithm-crowdsourcing workflows
(i.e., 3 workflows x 2 deep learning models). For the confidence threshold workflow, we chose as
the threshold the average value for all confidence values reported by prediction models across all
images. We again apply a distribution-free bootstrap test to compare the results for each bench-
marked method to those for manual annotation with respect to quality as well as the time taken
to complete the annotations, with p-values < 0.05 indicating a significant difference. We compute
significance values only on algorithms that could be applied to all the images.3

4.5. Study 3: Image Captioning
Following the classical technique used for image captioning evaluation, quality is measured using
the average BLEU (Bilingual Evaluation understudy) scores (Papineni et al., 2002). This measure
indicates the number of words/phrases in the predicted caption that are also found in the ground
truth captions, with 0 being an incorrect match and 1 being the best possible match. Since each
image is annotated thrice by different crowd workers, we average the BLEU score computed in
each case for the final score. For the algorithm, we use the off-the-shelf MS Azure captioning API,
resulting in us evaluating three hybrid algorithm-crowdsourcing workflows (i.e., 3 workflows x 1
deep learning model). For the workflows, we chose the same threshold for confidence threshold
as was employed for the object detection task. We again apply a distribution-free bootstrap test to
compare the results for each benchmarked method to those for manual annotation with respect to
quality and the time taken to complete the annotations, with p-values < 0.05 indicating a significant
difference.

5. EXPERIMENTAL RESULTS
We now report our findings for the quality and human effort resulting from evaluating the three
hybrid algorithm-crowd workflows, manual annotation, and algorithms.

5.1. Study 1: Image Classification
The trade-offs between annotation quality and human effort for each workflow implementation for
all images in the three datasets (VOC2012, MSCOCO, VizWiz) are shown in Figure 5. Significance
testing results are shown in Table 1.

While the highest quality labels come from the manual annotation protocol, significance testing
shows that most of the hybrid workflows produce comparable results to manual annotation. Specifi-
cally, all three algorithms lead to comparable results for the correction workflow whereas two of the
three algorithms lead to comparable results for the verification and confidence threshold workflows.

Our findings also highlight what one may expect when there are practical constraints such as lim-
ited time. The fastest option is algorithm only followed by verification and confidence threshold.
Recall that for both of the hybrid workflows a different worker is recruited to manually annotate

3Recall from the description of “Deep Learning" systems that SSD was trained on VOC and so could not
be tested on that dataset"
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Figure 5. Shown is the performance of three workflows for distributing varying levels of human
involvement with deep learning algorithms to classify images. Each plot shows the mean quality
resulting from all pairings of a workflow with a deep learning algorithm and the corresponding
average time to annotate each image for all images in VOC2012, MSCOCO, and VizWiz. The

data quality refers to the percentage of exact matches between the output of an annotation
protocol and the ground truth classifications. (best viewed in color)

Quality Time

VGG ResNet Incep VGG ResNet Incep

Algorithm 0.02 0.05 0.04 0.02 0.01 0.01
Correction 0.16 0.17 0.4 0.9 0.07 0.1
Verification + Manual ann. 0.04 0.14 0.11 0.18 0.03 0.03
Confidence threshold + Manual ann. 0.08 0.07 0.03 0.14 0.05 0.03

Table 1. p-values obtained from significance tests for how each method compares to manual
annotation with respect to quality and time to annotate for the image classification task. Values

shown in bold are statistically significant. As shown, most hybrid workflows are statistically
similar in terms of quality to manual annotation. Additionally, most hybrid workflows are

statistically different (in terms of being faster) than manual annotation. (Incep = Inception; ann
= annotation)

images deemed poor quality by an algorithm (i.e., confidence threshold) or crowd worker (i.e., ver-
ification). This suggests that decomposing the task to treat verification and re-annotation separately
requires less human effort than relying on a single worker to perform both subtasks (i.e., correction).

Overall, an effective tool for achieving a desirable quality-effort trade-off is the correction protocol
(marked by diamonds). This approach achieved quality statistically similar to manual annotation
while considerably reducing human effort; i.e., by roughly 6 seconds per image from 16 seconds to
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Figure 6. Shown is the performance of different workflows for distributing varying levels of
human involvement with algorithms to classify images in three datasets: MSCOCO, VizWiz, and

VOC2012.

10 seconds per image for two of the three algorithms (ResNet and Inception).

We performed qualitative thematic coding (Clarke and Braun, 2014) to identify common reasons
behind errors. We compared the best performing workflow (correction) with the worst performing
workflow (verification) for image classification, since image classification is a key step for all three
studied image annotation tasks (i.e., it is a precursor for completing object detection and image
captioning). We conducted our analysis on a sample of 200 images from the MSCOCO dataset
using the initial results obtained from the VGG model. We used the ground truth of the datasets that
shows segmentations of objects in each image in order to analyze the frequency of errors based on
whether an image contains a single object versus multiple objects. We then coded errors across all
images into three categories: (a) incomplete classification, where the resulting output of the hybrid
workflow contained only a subset of objects in the image, (b) misclassification, where the resulting
output of the hybrid workflow contained objects not present in the image, (c) unclassified, where
the resulting output of the hybrid workflow was empty.

Across both workflows, errors were more common in images that show multiple objects than those
with a single object; i.e., over 68% and 96% of the 84 images with multiple objects were incorrectly
classified for correction and verification respectively versus 8% and 21% of the 116 images with
single objects for correction and verification respectively. In terms of types of errors, of the 66
images incorrectly classified with correction, the majority of the errors (i.e., 79%) arose from in-
complete classification, 15% from images being unclassified and the rest (i.e., 6%) were a result of
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misclassification. With regards to the types of errors observed in the 105 images incorrectly classi-
fied with verification, while incomplete classification still was the major reason for errors (i.e., 55%),
a considerably large portion of the errors (i.e., 44%) also emerged from images being unclassified.
Upon further observation, we found the latter group to be dominated with images showing single
objects. These findings underscore that correction considerably outperforms verification because it
can overcome the issue that the initial results provided by the algorithms were insufficient; i.e., cor-
rection could correctly classify the many images with single objects that were left unclassified and
the many images with multiple objects that were incompletely classified. We suggest in Section 6
a potential different workflow that may achieve the faster speeds of the verification workflow while
overcoming this issue that the initial results provided by the algorithms are insufficient.

Different deep learning models were used to not only examine the stability of our findings for
various protocols but also to offer practical guidance. In terms of computation costs, the run-time
costs for generating predictions are negligible when using GPU resources and much more when
relying on CPUs (i.e., ∼2 seconds per image for VGG and 1 to 1.5 seconds for ResNet and Inception
on a standard Intel 7th generation 4 core CPU). Consequently, Inception emerged as the ideal deep
learning model across all the datasets not only in terms of quality but also computational time.
On the other hand, workflows involving the VGG model took the most amount of time across all
datasets, in most cases comparable to the time taken in manual annotation.

Figure 6 shows the trade-offs between annotation quality and human effort for each workflow im-
plementation with respect to each of the three datasets (VOC2012, MSCOCO, VizWiz). These plots
parallel those shown in Figure 5, while offering finer grained insights.

One difference between datasets that we observe is that both correction and verification yield
slightly higher quality results than manual annotation on the VizWiz dataset, while also elimi-
nating roughly 67% and 65% of human effort respectively. We hypothesize this is because more
concentration (and so time) is needed to identify objects when reviewing the lower quality images
that common in VizWiz since the images are taken by people who are blind. In this case, we suspect
the algorithms effectively shortcut the time needed to locate the plausible regions in the images.

Another difference that we observe between datasets is that human effort speed ups occur only
for the images in VOC2012 and VizWiz, and not for the images in MSCOCO. This observation
is consistent with previous revelation that correction yields better results for images with a single
object (common for VOC2012 and VizWiz) than for complex images containing multiple objects
(common in MSCOCO). Accordingly, we hypothesize the correction workflow is a poorer fit for
complex images because it takes more time for workers to locate the object of interest in complex
scenarios where there can be great variability in an object’s size, orientation, and pose.

5.2. Study 2: Object Detection
Figure 7 shows the trade-offs between annotation quality and human effort for each workflow for
the two datasets which include ground truth annotations (VOC2012, MSCOCO). For significance
testing, we found that all hybrid workflows are statistically similar in terms of quality to manual an-
notation and most hybrid workflows are statistically different (in terms of being faster) than manual
annotation.

Overall, manual annotation again results in the highest quality labels. Interestingly though, quality
of most other hybrid protocols are within 3-15 percentage points of that obtained from manual anno-
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Figure 7. Shown is the performance of three workflows for distributing varying levels of human
involvement with deep learning algorithms to detect objects in images. Each plot shows the

mean quality resulting from all pairings of a workflow with an algorithm and the corresponding
time per image required to annotate all images in two datasets: VOC2012 and MSCOCO. The
data quality is evaluated using IoU (intersection over union), i.e., the fraction of pixel overlap

between the bounding boxes of the same object category produced by the workflow and the
ground truth.

tation, while requiring around half the amount of human effort. This observation is supported by the
significance tests which shows that the results obtained using all hybrid workflows are statistically
similar to the ones obtained from manual annotation.

For time-constrained applications, the fastest option is algorithm only followed by confidence
threshold and then verification. This trend largely resembles that observed for the image classi-
fication task. In addition, the significance tests for this task show that the time taken by all hybrid
workflows are similar to that of the fastest option (algorithm only).

Overall, the most promising option for achieving a desirable quality-effort trade-off is confidence
threshold. It achieves 71% (for SSD) and 69% (for Faster RCNN) in data quality while requiring
less than one half of the human effort required for manual annotation. The results obtained are
significantly better than those obtained using the algorithmic workflows. Moreover, confidence
threshold skips the verification crowdsourcing step needed in the verification workflow, leading to
additional savings in cost and human effort with almost no loss to quality. As for the correction
workflow, it typically offers no benefits in terms of improving quality or reducing human effort. We
attribute this to the complexity of the task where we observed crowd workers either corrected the
predicted object category or fixed the bounding box boundaries but not both.

Again, we employed different deep learning models to not only examine the robustness of our
findings but also to provide practical guidance. Overall, workflows using SSD resulted in higher
quality and faster results than Faster-RCNN. Faster-RCNN is an older model, and we attribute
its poorer performance in part to limitations in its architecture and training data (Faster-RCNN is
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Figure 8. Shown is the performance of several workflows for distributing varying levels of
human involvement with deep learning algorithms to detect objects in images from VOC2012

and MSCOCO.

trained on VOC 2007 whereas SSD is trained on both VOC 2007 and VOC 2012).

Quality Time

Microsoft Azure API Microsoft Azure API

Algorithm 0.05 0.0345
Correction 0.86 0.08
Verification + Manual annotation 0.25 0.0462
Confidence threshold + Manual annotation 0.12 0.0478

Table 2. p-values obtained from significance tests comparing each method to manual annotation
with respect to quality and time to annotate for image captioning. Values shown in bold are

statistically significant. All hybrid workflows are statistically similar in terms of quality and most
hybrid workflows are statistically different (in terms of requiring less human effort) compared to

manual annotation.
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Figure 9. Shown is the performance of three workflows for distributing varying levels of human
involvement with a deep learning algorithm to caption images. Each plot shows the mean

quality and the corresponding time per image required to complete annotating all images in two
diverse datasets: MSCOCO and VizWiz. The data quality is evaluated using BLEU scores which

computes the number of words/phrases in the predicted caption that are also found in the
ground truth captions.

Figure 8 shows the trade-offs between annotation quality and human effort for each workflow for
both datasets—VOC2012 and MSCOCO, offering finer grained insights than shown in Figure 7.
One key difference that we observe between datasets is for VOC2012 on which all hybrid workflows
reduce human effort by more than half the time taken in manual annotation, and verification yields
higher quality results than other workflows. In contrast, for MSCOCO, the correction workflow
takes longer, while both verification and confidence threshold workflows yield better results in terms
of quality as well. We hypothesize this difference is due to the greater complexity of the images in
MSCOCO than contained in VOC2012.

5.3. Study 3: Image Captioning
Figure 9 shows the trade-offs between annotation quality and human effort for each workflow for
the two datasets for which we have ground truth (MSCOCO and VizWiz). Table 2 shows the signif-
icance testing results.

While manual annotation results in the highest quality results, it also requires extensive human
effort. We found that quality of all considered workflows produce results within five percentage
points of the quality obtained from manual annotation, with human effort reduced by roughly 20-
60% for both datasets. The correction workflow offers the highest quality results among all hybrid
approaches, achieving quality within one percentage point of that obtained from solely relying on
human effort, and so offering the best quality-effort trade-off. Significant tests also confirmed that
the quality of all three hybrid workflows are statistically similar to that of manual annotation and
that correction workflow performed better than the other two hybrid workflows.

When applications impose practical constraints such as limited time, other hybrid workflows
yield promising results in terms of reducing effort while yielding only slightly lower quality than
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Figure 10. Shown is the performance of three workflows for distributing varying levels of
human involvement with a deep learning algorithm to caption images coming from VizWiz and

MSCOCO.

that of the top-performing correction workflow. Based on the significance tests, both verification
and confidence threshold perform significantly faster than manual annotation. For example, confi-
dence threshold returns results the fastest, while reducing effort by approximately 60% compared
to relying exclusively on humans. This is exciting since it still yields quality within five percentage
points of relying exclusively on humans. The effort reduction is attributed to fewer images being
crowdsourced, since the verification step is skipped and instead decided automatically based on the
algorithm’s confidence. Also, computational costs for obtaining labels from algorithms are small
for cloud computing services such as Microsoft Azure API.

Figure 10 shows the trade-offs between annotation quality and human effort for each workflow
implementation for all images in two datasets (MSCOCO, VizWiz). Our findings show that all
hybrid workflows follow the same trend where the quality of all workflows is similar or better than
that of (manual annotation). In terms of time, confidence threshold was the fastest of all three
hybrid workflows, followed by verification and correction. Moreover, unlike the observations for
previous tasks (image classification, object detection), the individual performance of all three hybrid
workflows in this task across both VizWiz and MSCOCO datasets was consistent in terms of both
quality and time.
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6. DISCUSSION
From the trends across all tasks, datasets, and algorithms, we identify several recommendations
for system designers facing different constraints. Our experimental results highlight which hybrid
workflows may generalize well across various tasks and demonstrate the relationship of human-
time with the quality of results. We offer our findings as valuable context to inform future design
choices as well as reflect on past hybrid design choices employed for applications such as detecting
inaccessible sidewalks (i.e., used verification) (Hara et al., 2014), describing images to people who
are blind (i.e., used correction) (Salisbury et al., 2018), and more (Lofi and El Maarry, 2014).

For applications where speed is critical (e.g., image search/retrieval), confidence threshold is the
best choice. This approach also offers a further advantage in that it reduces the number of images
needing manual annotation, and so is advantageous for applications with constrained crowdsourc-
ing budgets or access to large crowds.

For applications where quality is critical, our overall recommendation is to use correction. We rec-
ommend restricting its use to simple tasks, such as image classification and captioning, rather than
more complex tasks such as object detection, which requires both object categories and bounding
boxes. This is particularly valuable when we scale the size of the image collection. In real-world
scenarios, the size of image databases used are significantly larger than the size used in these exper-
iments. For instance, the popular ImageNet database contains 14 million images, iStock offers 30
million photos, and Flickr hosts more than 6 billion images. If we consider even a fraction of this
size, annotating a dataset of 1 million images using the correction workflow would save approxi-
mately 1,667 hours of human effort while producing similar results to manual annotation. This is
equivalent to saving 41 40-hour work weeks in time, and consequently $13,000 in cost (considering
a wage of $8/hour). This highlights the immense potential of employing hybrid workflows in terms
of achieving high quality results while making great savings on time and money.

Our findings highlight that employing algorithmic predictions with crowdsourcing can be beneficial.
This is especially exciting given that deep learning models have recently become more accessible to
a larger base of users through cloud-based services (e.g., Google Cloud Platform, Microsoft Azure,
Amazon Web Services) and user-friendly software platforms (e.g., Tensorflow, Keras). Until the
past few years, access to deep learning models was limited because domain expertise was necessary
to configure complex deep learning software environments (e.g., Caffe) and it was difficult to ac-
cess necessary computational resources (e.g., GPUs or CPU clusters). A clear, necessary stepping
stone for progress in hybrid workflows is the availability of well-performing algorithms for target
tasks, which is not yet available for many tasks (e.g., video analysis, question answering, robot
navigation).

This work is motivated by our desire to inspire innovation in maximizing the strengths of hybrid
systems in solving tasks much more efficiently as opposed to the traditional way of relying solely
on humans or machines. We offer our framework and implementation as a starting point to simplify
the process of efficiently designing and comparing hybrid workflows for a specific task. To support
these purposes, we will publicly release all code and material. We hope users will leverage and
extend this framework to establish best practices and design choices for their own data annotations
tasks and datasets.

A valuable direction for future work is to consider other ways to combine algorithmic and crowd-
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sourcing efforts to overcome the limitations of the workflows we benchmarked. For instance, ob-
serving from our qualitative analysis of the results for the image classification task that a major
reason for errors from the fastest task (i.e., verification) is insufficient initial results from algorithms
due to images being unclassified or incompletely classified, a modified version could instead of-
fer a ranked list of proposed initial results from multiple algorithmic models from which humans
can select (Jain and Grauman, 2016). This may enable simultaneously achieving the fast speed of
verification with the high quality that is possible with correction.

While our work focuses on hybrid workflows at run-time, another valuable direction for future work
is to expand upon our analysis to also consider hybrid workflows at design-time. This includes con-
sideration of active learners (Gilyazev and Turdakov, 2018), which are algorithms that minimize
human involvement by directing their annotation efforts only to those examples that will lead to the
greatest boost in model performance during model training. A key distinction between analyzing
run-time and design-time methods is which evaluation metrics matter the most. For instance, anno-
tation time is a critical factor that matters at run-time, while it is less so at design-time where the
sole focus centers on capturing high quality annotations. A promising design-time workflow is to
iteratively retrain a model using corrections provided by workers for images that an algorithm has
low confidence in its predictions. Already, the promise of this hybrid workflow has been shown for
annotating the LSUN dataset (Yu et al., 2015), which contains 69 million annotated images.

Another interesting future work would be to integrate interpretability (i.e. explanation) of the deep
learning models. Understanding the reasons why a model produces a certain prediction can further
enable us to enhance the hybrid workflow by leveraging the model’s strengths while compensating
its flaws with the crowd workers’ support to improve the overall accuracy.

7. CONCLUSION
We introduce a framework that allows users to employ different hybrid methods which partner
crowds and algorithms to collaboratively annotate images. Our evaluation of how three popular
hybrid algorithm-crowdsourcing workflows compare to manual annotation and automated anno-
tation for three tasks (image classification, object detection, image captioning) reveal the general
(dis)advantages of each approach. All code and data will be publicly shared at http://anonymous.com
to facilitate extensions to this work.
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