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ABSTRACT

Image classification is a classical task heavily studied in computer vision and widely required in
many concrete scientific and industrial scenarios. Is it better to rely on human eyes, thus asking
people to classify pictures, or to train a machine learning system to automatically solve the task?
The answer largely depends on the specific case and the required accuracy: humans may be more
reliable – especially if they are domain experts – but automatic processing can be cheaper, even if
less capable to demonstrate an “intelligent” behaviour.

In this paper, we present an experimental comparison of different Human Computation and Machine
Learning approaches to solve the same image classification task on a set of pictures used in light
pollution research. We illustrate the adopted methods and the obtained results and we compare
and contrast them in order to come up with a long term combined strategy to address the specific
issue at scale: while it is hard to ensure a long-term engagement of users to exclusively rely on
the Human Computation approach, the human classification is indispensable to overcome the “cold
start” problem of automated data modelling.

1. INTRODUCTION AND MOTIVATION

Light pollution is the excessive, poorly directed or unnecessary artificial light at night (Hollan,
2009); it leads to negative effects on human well-being, biodiversity, visibility of stars, safety and
energy consumption. We are witnessing an increasing awareness about the light pollution issue and
the strategies to fight it: overhead lamps should never emit light directly above the horizontal, blue
light should be avoided in favour of a colour temperature of 3000 K or lower, light should be used
only as much as needed for the specific purpose. On the other hand, the study and measurement
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of the light pollution phenomenon is still partially an open research question (Sánchez de Miguel,
2015).

One indirect method to quantify the phenomenon is by analyzing pictures of the Earth at night,
and especially of cities at night. The astronauts of the International Space Station (ISS) take tens
of thousands of pictures of the Earth from above during their space missions; NASA makes this
wealth of images available for free on the Web. Those pictures have the right level of resolution
to detect the brightness and to distinguish the light sources; moreover, they are continuously taken
across different missions, therefore they can be used also to study the light pollution evolution over
time.

However, those images come unlabeled and their subject can vary greatly: photos can include not
only cities at night and stars, but also images of astronauts floating in space, or of the ISS itself;
cities and portions of Earth during the day; astral phenomenons like the Aurora Borealis; and
mixed-subjects images not of interest for light pollution research. Therefore, we address the task of
classifying those images in order to make them suitable for subsequent analysis of light pollution
levels.

In this paper, we illustrate and compare different approaches to solve the classification problem, one
based on Human Computation methods and two based on the employment of Machine Learning
techniques. We illustrate the experiments and analyze their results to come up with suggestions on
the possible optimal setting to address this issue in the long term.

2. IMAGE CLASSIFICATION APPROACHES

To solve the image classification task, two alternative approaches have traditionally been used in
literature: people-based human computation and computer-based machine learning. A more recent
trend addresses the possibility to take the best of both worlds.

2.1. Human Computation

Human Computation (Law and Ahn, 2011) is a computer science technique in which a computa-
tional process is performed by outsourcing certain steps to humans. Unlike traditional computation,
in which a human delegates a task to a computer, in Human Computation the computer asks a per-
son or a large group of people to solve a problem; then it collects, interprets and integrates their
solutions. The original concept of Human Computation by its inventor Luis von Ahn derived from
the common sense observation that people are intrinsically very good at solving some kinds of tasks
which are, on the other hand, very hard to address for a computer; this is the case of a number
of targets of Artificial Intelligence (like image recognition or natural language understanding) for
which research is still open.

A specific kind of Human Computation is crowdsourcing (Howe, 2008), i.e. the process to out-
source tasks to a “crowd” of distributed people, usually through online micro-work platforms (e.g.
Amazon Mechanical Turk), which often imply a monetary (micro-)reward. When the accent is more
strongly related to the involvement of people in scientific campaigns or experiment, the term Citizen
Science (Irwin, 1995) is used to stress the contribution to public awareness.
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With specific reference to non-monetary incentives to people, entertainment and fun are often used
to motivate participation. A widely used approach (Von Ahn, 2006) is based on Games With a
Purpose (GWAP). A GWAP is a gaming application that outsources steps of a computational process
to humans (Human Computation task) in an entertaining environment. To be effective, a GWAP
should be carefully designed (1) to provide an effective mechanism to solve the task and (2) to
assure a continuous involvement and contribution of users/players.

2.2. Supervised Machine Learning

Many different supervised classification methodologies exist and can be applied to solve the image
classification task. Those approaches can be roughly distinguished between manual selection of
the image features to train the model and a so-called deep learning approach which also include a
feature learning process.

With respect to manual selection of features, in literature different techniques are used for image
classification: detection of edges and curvatures (Nixon and Aguado, 2008), extraction of texture to
identify objects or regions of interest in an image (Lin et al., 2011), image indexing by the color con-
tents (Smith and Chang, 1995), color quantization to reduce the color levels as in (Debevec, 2008).
When features are identified, any traditional supervised learning algorithm can be used (Kotsiantis
et al., 2007).

With respect to the deep learning approach, Convolutional Neural Networks (CNN) are widely
used in the context of computer vision and image recognition, because they are built to resemble
visual perception in humans (Krizhevsky et al., 2012). They are made of several layers of artificial
neurons that process portions of the original image: they manage to maintain information related
to the spatial structure of the data, keeping track of pixels that are nearby to each other in order
to recognize visual patterns. Deep Convolutional Neural Networks have been widely used in the
last years to solve image recognition tasks with performance close to that of humans (Russakovsky
et al., 2015).

2.3. Active Learning

Supervised learning methods always need a training set to “learn” the classification model. The
key idea behind active learning (Settles, 2012), instead, is that a machine learning algorithm can
perform better with less training if it is allowed to dynamically choose the data from which it learns.
An active learner may pose “queries” (in the form of unlabelled data instances) to an “oracle”
(e.g., a human annotator) which understands the nature of the problem and can output labelled data
instances.

While not a full mixed human-machine approach, active learning is a successful example of a trade-
off between purely-manual and purely-automatic classification. This approach is well-motivated
in many applications in which unlabelled data is abundant or easy to collect, but training data is
difficult, time-consuming, or expensive to obtain.

3. DATA AND OBJECTIVE

Looking at the pictures made available by NASA, we define six categories: CITY (images of cities at
night), AURORA (images of the aurora borealis or northern lights), STARS (images of starry space),



16 G. Re Calegari, G. Nasi and I. Celino / Human Computation (2018) 5:1

ISS (images of the spacecraft or astronauts), BLACK (completely dark images) and NONE (for any
other cases); an example of each category is shown in Figure 1. The goal of the image classification
task is to label each picture with the corresponding category.

(a) City (b) Aurora (c) Stars

(d) ISS (e) Black (f) None

Figure 1. Examples of images belonging to the six classes

Not all those classes are equally important for light pollution research. We are particularly in-
terested in identifying images of cities at night (to quantify the light pollution phenomenon) and
pictures of stars and black images, since they are useful for the calibration of the measurement
system (Sánchez de Miguel, 2015).

Therefore the objective is to obtain very good results in predicting at least those three classes. We
would like to retrieve as many pictures of cities at night as possible (high values of both precision
and recall) to potentially study all the cities on Earth. On the other hand, for calibration purposes, we
need to select pictures that are actually black and images with actual stars (high values of precision,
no requirement on recall). As regards the other classes (ISS, AURORA and NONE), they are not
directly related to the light pollution goal, but they are useful to be distinguished both by humans
and machines.

In the rest of the paper, we illustrate how we addressed the classification objective by both Human
Computation and Machine Learning approaches. The ambition is to understand to what extent the
two approaches are complementary or overlapping. We aim to classify several thousands of images
obtained during various ISS missions and made available on the Web by NASA1.

1Cf. https://eol.jsc.nasa.gov/.

https://eol.jsc.nasa.gov/
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4. HUMAN COMPUTATION EXPERIMENT

To solve the classification task by involving people, we developed the Night Knights game2, a
GWAP designed for the light pollution purpose.

The human participant plays the role of an astronaut with the mission of classifying images taken
from the ISS. At the beginning of the game, each player is randomly coupled with another player
and a sequence of images is shown to them simultaneously. Each image must be classified into
6 predefined categories and players can gain points only if they agree on the same classification.
Each game lasts one minute and so people have to be quick to classify as many images as possible.
Figure 2 shows some screenshots of the game user interface.

(a) Classify an image (b) Agreement (c) Disagreement

Figure 2. Night Knights: the game play

Night Knights takes inspiration from one of the most famous GWAP for image classification, the
ESP Game by Luis von Ahn (Law and Ahn, 2011), but it implements different game mechanics and
aggregation algorithm. Differently from the ESP Game that aimed to add free-text tags to images
(annotation or labelling purpose), the goal of Night Knights is to classify images into a closed set
of categories (classification purpose). As regards the algorithm used to aggregate players’ answers,
the ESP game is based on simple agreement, which means that only two coherent contributions
are required to consider the annotation task completed (i.e., if two users type the same tag, the
tag is considered valid). On the other hand, Night Knights is still based on an output-agreement
strategy (Von Ahn and Dabbish, 2008), but the algorithm is more articulated: each image is offered
to multiple players, whose contributions are weighted according to their reliability (measured on a
gold standard) and aggregated to form a classification score; once the score overcomes a specific

2Cf. http://www.nightknights.eu/.

http://www.nightknights.eu/


18 G. Re Calegari, G. Nasi and I. Celino / Human Computation (2018) 5:1

threshold, the image is classified and removed from the game (cf. also (Celino et al., 2012)). By
design, a minimum of four agreeing users are required to reach the classification threshold; more
details on the design and implementation of Night Knights are provided in (Celino et al., 2016).

The game was released in October 2016 in beta version and was then more extensively advertised
for a related competition3 whose winner joined the 2017 Summer Expedition to observe the Solar
Eclipse in USA. The competition lasted about one month, from June 12th to July 7th 2017, and was
addressed to all EU University students. At the time of writing (October 2017), the global results
obtained by Night Knights are summarized in Table 1.

Table 1. Night Knights experimental results

classified images 27,699
players 633
total played time ∼226 hours
throughput 122.44 task/hour
average life-play (ALP) 21.44 min time/user
expected contribution (EC) 43.76 task/user

To evaluate efficiency, attractiveness and effectiveness of Night Knights, we measure the main
GWAP metrics (Law and Ahn, 2011) which are the throughput (number of solved task per unit
of time), the average life play (ALP, average time spent by each user), and the expected contribu-
tion (EC, average number of tasks solved by a user). In our case, a “solved task” is a classified
image (with aggregated score over the threshold).

The numbers in Table 1 show that the game managed to engage users to play a substantial amount
of time, thus classifying almost 28,000 photos. Monitoring the evolution over time of the main
metrics, we noticed a significant increase of players’ participation during the competition period
(e.g. ALP reached values over 100 minute/player). This means that providing a tangible reward to
players can make them contribute more efficiently, speeding up the classification process (higher
throughput), engaging them for a longer time (higher ALP), and ensuring a larger contribution rate
to the human computation task (higher EC). As a global result, more images get classified.

With specific reference to the number of contributions required to reach an agreement on classifi-
cation, on average 4.6 players are needed, with a number of users ranging between 4 and 17. This
result is coherent with the minimum number of contributions required to classify an image that we
set at design time. Making this analysis separately for each category, we discover that there are
categories that are easier to classify than others. CITY is one of the easiest classes and it is evident
by looking at the histogram in Figure 3, which shows a peak in correspondence to 4 players, quickly
decreasing towards low frequencies for higher number of users. On the other hand, the histogram
of the STARS class is almost constant between 5 and 8 players, indicating that these images are
intrinsically harder to classify and thus an higher number of contributions is needed to reach an
agreement.

3Cf. http://stars4all.eu/index.php/lpis-usa-competition/.

http://stars4all.eu/index.php/lpis-usa-competition/
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(a) City (b) Stars

Figure 3. Number of users required to reach an agreement on classification for different
categories

However, while the competition results seem encouraging, it is very challenging (if not impossible)
to guarantee prizes and tangible rewards until the completion of the classification task over all
images taken on board of the ISS: this kind of incentive works well within a limited period of time
with clear competition objectives. Ensuring an indefinite and continuous engagement of players
requires different strategies and incentives that cannot be ensured by a “casual game” like Night
Knights. For this reason, we set up different experiments to evaluate the possibility to rely on
automatic classification means.

5. MACHINE LEARNING EXPERIMENTS

Automatic classification methods do not suffer from the typical problems of Human Computation
activities, such as users engagement, varying classification time, incentives to motivate participation
and so on. On the other hand, the main requirement to set up a supervised learning classifier is to
have an already-labelled dataset.

In our experiments, we decided to use the ∼26,000 images classified through Night Knights from the
game launch to the end of the competition; while this dataset does not exactly constitute a “ground
truth” (since we do not know the true classification of those images), we use it as such, dividing it
in a training set and a test set, so to enable a direct comparison between the human and machine
classifications. The distribution of the images in the dataset across the 6 classes is not balanced:
most of the images represent cities (62%) and only few of them (1-5%) belong to BLACK, STARS
and ISS classes. Different experiments are required to understand how to suitably handle a dataset
which is so unbalanced and heterogeneous.

As described in Section 2, different methods can be adopted for image classification; we decided to
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follow two parallel approaches: a Random Forest classifier using as input a set of manually-chosen
color-based features and a more complex deep learning methodology using Convolutional Neural
Networks. In both cases, we tuned the model parameters to find the optimal configuration in terms
of precision and recall of the classes of interest with respect to the Night Knights results. For both
models, we also studied the effect of the size and composition of the training set (i.e., number of
images and class distribution with balanced vs. stratified data). Additionally, for each of the two
approaches, we also tuned their specific distinguishing parameters, as explained in detail in the
following paragraphs.

5.1. Color-based features and Random Forest Classifier

This first approach requires two phases: feature extraction and model training. With respect to
the former, we define a set of color-related features, based on the intuitive idea of creating a 3D
histogram of each image colors. This phase is as follows: firstly, the image colors are defined
in a mathematical way, by representing each pixel in a RGB three-dimensional color space (red,
green and blue); then, the pixels’ distribution is analyzed with respect to a color palette to detect
the most prominent colors. We define our color palette as a set of fixed colors by partitioning the
RGB color space in a uniform way: each axis is divided in n splits, generating a number of boxes
(buckets) equal to the cube of the number of splits (i.e. with 3 splits we have 9 boxes, with 4 splits
64 boxes, with 5 splits 125 boxes and so on). Figure 4 shows the original image and the same image
represented in an RGB color space partitioned in 9 buckets. Finally, we count how many pixels
fall in each bucket and we compute the relative count, with respect to the total number of pixels in
the image. Each bucket becomes a feature of our classification model, indicating the percentage of
pixels that fall into that bucket in the RGB color space.

(a) Original image (b) Partition of the RGB space in 9 buckets

Figure 4. Preprocessing an image by representing it in the RGB color space.

The number of splits of the RGB space is a parameter that needs to be carefully tuned in order to
obtain the best classification performances. It is worth noting that, while increasing the number of
buckets makes the description of the image more accurate from a color composition perspective,



G. Re Calegari, G. Nasi and I. Celino / Human Computation (2018) 5:1 21

on the other hand, it increases the model complexity, with a consequent worsening of the time
performance. Therefore an accurate evaluation of the best number of splits is essential. We made
different experiments with 3, 4 and 5 splits: the subsequent model evaluation improves with the
number of buckets, but while the difference between 3 and 4 split was sensible, the improvement
from 4 to 5 splits was less relevant; thus, we stopped at 5 splits (i.e. 125 features) to avoid a too
complex and computationally-expensive modelling phase.

As regards the model building phase, we adopt a Random Forest (Breiman, 2001) classifier, based
on the common-sense intuition that our images can be distinguished based on their colors with
a tree-based algorithm like "Are more than 50% of pixels black? Then advance along a certain
branch. Less? Take this other branch". While the simplest model implementing this classification
approach is the decision-tree, we choose the more robust Random Forest implementation, which
is an ensemble of trees (a forest, indeed) in which the classifications of all the trees are taken into
account to generate the aggregated result.

The best model is obtained after tuning the different parameters as follows: 85%/15% data split
between training/test set, the training set conserving the original stratified distribution of images
across classes and, as already mentioned, 5 splits and 125 color-based features. Table 2 presents the
confusion matrix between the color-based classifier and the Human Computation experiment.

The results are generally positive, with a global accuracy of almost 84%. Also the agreement indexes
indicate a good accordance between the color-based classifier and the Human Computation system:
the Rand Index is 0.87 and its adjusted version is 0.684.

Table 2. Confusion matrix of the Night Knights and the best-performing Color-based model

Night Knights
ISS Aurora Black City None Stars

C
ol

or
-m

od
el

ISS 0.98 0.00 0.00 0.00 0.02 0.00
Aurora 0.05 0.92 0.00 0.00 0.00 0.03
Black 0.05 0.04 0.80 0.03 0.03 0.04
City 0.07 0.01 0.00 0.85 0.04 0.03
None 0.11 0.03 0.02 0.01 0.80 0.03
Stars 0.12 0.00 0.09 0.03 0.18 0.58

The precision obtained on the different classes is quite high (in the 80-98% range) but for the
STARS class which is less that 60%. In terms of recall, again in most cases the model gets good
results (78-98%) except for the ISS class (23%) and again for the STARS class (14%). This means
that the color-based model is a good classifier, therefore confirming our intuition that colors are
a powerful discriminant characteristics of our target images; nonetheless, for the light pollution
research objective, an improvement is needed at least with respect to the STARS pictures, which are

4The Rand Index (Rand, 1971) is a metric used to evaluate the similarity between data clusters by counting
the elements that are classified in concordant and discordant ways; the Adjusted Rand Index is the Rand Index
adjusted for the chance grouping of elements. Both indexes range between 0 (no accordance) and 1 (perfect
accordance).
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used for calibration purposes.

To improve the prediction results, especially on the worse performing classes, we could change
the feature selection strategy (e.g., by splitting the color space in a non-uniform way or by adding
additional predictors), also on the basis of a qualitative evaluation of the mistakes made by our
model. Enriching the feature selection, however, leads to more complex models; since the above-
mentioned experiment was already quite computationally expensive (cf. Section 5.3), we decided
to try a different approach, by adopting a deep learning method.

5.2. Deep Convolutional Neural Network

Building and training a Deep Convolutional Neural Network from scratch is a long process that
involves manually sizing and tuning the architecture of the DCNN. Consequently, we decided to
follow another course of action, by re-training an existing, well-performing model (which was orig-
inally trained on a similar task) and to make use of its prior knowledge while adapting it to our
dataset: this is a technique known as Transfer Learning (Donahue et al., 2014). This approach en-
ables us to cut the training time of a model to a few hours on a normal laptop, whereas deep learning
from scratch could take days or weeks and must rely on powerful GPUs for processing. Moreover,
this process hides most of the complexity normally associated with the full-scale building of a Deep
Convolutional Neural Network, allowing us to focus on just a few hyper parameters and settings.

On a technical level, the neural network library we use is Google’s Tensorflow5, one of the most
popular and appreciated in the deep learning community. The recommended network model for
the image recognition task suggested by the Tensorflow platform is the open-source Inception-v3
model (Szegedy et al., 2015), which is a network trained on the ImageNet dataset6, a common
benchmark challenge for academic studies in the field of image recognition. The 2014 ImageNet
challenge asked to classify 150,000 images into 1,000 different classes, where each class was a
common object, plant, animal, etc. The Inception-v3 model achieved 21.2% top-1 and 5.6% top-5
error rate on the ImageNet dataset7.

We apply the Transfer Learning approach by re-training the model as follows: we load the pre-
trained Inception-v3 model and remove the old top layer (which is the one responsible for making
the actual prediction based on the features analyzed by the underlying hidden layers); we create a
new top layer and train it on our dataset (even if our classes weren’t part of the 1,000 originally
present in ImageNet); the strong assumption here is that the information that allowed Inception-
v3 to categorize over 1,000 classes in ImageNet are also useful for our task, even in a decidedly
different (and very peculiar) dataset.

The re-training process actually consists of two phases: a first one in which “bottlenecks” are cre-
ated, and a second one when the actual training takes place. Bottleneck is an informal term indicat-
ing the penultimate layer of the neural network, which produces a summary of the image features
for the final classification layer. After the bottlenecks creation, the actual training of the new top
layer begins, by repeating a series of learning steps in which a different subset of training images is

5Cf. https://www.tensorflow.org.
6Cf. http://image-net.org/.
7Cf. https://github.com/tensorflow/models/tree/master/inception.

https://www.tensorflow.org
http://image-net.org/
https://github.com/tensorflow/models/tree/master/inception
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analyzed and used to train the model; after each step, a training accuracy and a validation accuracy
values are computed to evaluate the balance between improving accuracy and avoiding overfitting.
The number of learning steps is a model configuration parameter. Additionally, to create a more
robust model, training images can be modified by adding distortion, scaling, cropping and adjusting
brightness.

The best model is obtained after tuning the different parameters as follows: 85%/15% data split
between training/test set and 4,000 learning steps; we experimentally evaluated that changing be-
tween balanced and stratified did not impact on results, thus we used the same stratified training set
employed in the color-based model to enable a direct comparison; moreover, the addition of image
distortion did not help either, so the best model we illustrate makes use of the original images, to
avoid further processing time. Table 3 presents the confusion matrix between the DCNN classifier
and the Human Computation experiment.

Table 3. Confusion matrix of the Night Knights and the best-performing DCNN-based model

Night Knights
ISS Aurora Black City None Stars

D
C

N
N

-m
od

el

ISS 0.96 0.00 0.00 0.00 0.03 0.00
Aurora 0.01 0.97 0.00 0.00 0.01 0.01
Black 0.01 0.00 0.81 0.07 0.08 0.04
City 0.00 0.00 0.00 0.99 0.01 0.00
None 0.01 0.00 0.00 0.01 0.97 0.01
Stars 0.13 0.05 0.09 0.07 0.05 0.61

The results are again positive and even better than the color-based model, with a global accuracy of
95%. Also the agreement indexes improve: the Rand Index is 0.97 and its adjusted version is 0.91.
The precision obtained on the different classes is high (in the 81-99% range) but for the STARS
class which, also in this case, achieves the lowest precision of 61%. In terms of recall, the DCNN
model gets good results on all classes (83-98%) with the lowest value again for the STARS class.

The deep learning approach seems therefore a very promising solution for our specific case of image
classification. Further considerations are offered hereafter.

5.3. Comparison between the two Machine Learning approaches

Both classification models show very high values of precision and recall in almost all the classes.
Overall, the DCNN model performs better than the color-model: this appears reasonable, since the
deep learning methodology builds a model that is more precise and can generalize better than the
color-based one, because more different features are taken into account and thus the description of
each picture is more accurate and thorough.

A result, which is very relevant for our purposes, is the prediction of the CITY class with extremely
high precision and recall (99% and 96% respectively for the DCNN model), which guarantees an
almost perfect recognition of the pictures of cities, which are the first and foremost goal of our light
pollution evaluation. We attribute this result to at least a couple of factors: firstly, the uniqueness of
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the city images with respect to the others classes, as they have more peculiar features and are less
likely to include elements from other classes; secondly, city images are the most prevalent in our
corpus, so a more refined training can have occurred on them.

As regards the other two classes we are interested in – BLACK and STARS – further considerations
are needed. The BLACK class is predicted with 81% precision and 88% recall in the DCNN model:
since they are used for calibration only, we can be quite satisfied with the precision and give up with
respect to a higher recall, thus paying the price of discarding some of the photos.

STARS, on the other hand, seems to be the most difficult class to predict, since both models achieve
the lowest precision of 58% and 61% (and in the color-based model, recall is also very low at 14%).
Having a look at the confusion matrices in Tables 2 and 3, this is also evident, since they are often
mistaken with all the other categories, with almost equal percentages. This apparently negative
result does not completely surprise us: within the photos taken from the ISS, it is quite difficult
to find images depicting only a starry sky, since in most cases the astronauts take mixed pictures,
putting in the composition also parts of the Earth’s surface or the ISS, as the ones shown in Figure 5.

(a) (b) (c)

Figure 5. Example of images depicting stars mixed with other categories (CITY, ISS and
AURORA)

As explained before, the starry sky pictures are useful for calibration purposes: the brightness of
well-known stars can be compared with the city illumination, thus allowing for a quantitative inter-
pretation of the cities’ light pollution phenomenon. Therefore, if “mixed” pictures can be analyzed
to identify the starry part, they can be considered valuable. As an example, we took a mixed picture
and submitted it to an online service that automatically identifies the visible stars8: the result shown
in Figure 6 demonstrates that the “poor” results on the STARS class can anyway lead to a positive
outcome for our specific purpose.

Given the fact that we are interested in only 3 classes (CITY, STARS and BLACK) out of the 6
proposed categories, the choice of training a 6-class classifier may appear questionable. Indeed,
we tried also to train both color-based models and DCNN models on 4 classes (the 3 we are in-
terested in and a fourth encompassing all other cases) to check if precision on the relevant classes
could increase. Experimentally, however, we observed that both families of classifiers, trained on 4
classes, returned worse results than the aforementioned experiments; we interpret this outcome as a
confirmation of the value of our original 6-class approach: the artificial fourth class was probably

8Cf. http://nova.astrometry.net/.

http://nova.astrometry.net/
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(a) Original image (b) Identification of stars and constellations

Figure 6. Automatic recognition of stars and constellations in a mixed picture

too mixed in terms of image content, so that the models were unable to learn to correctly distinguish
it from the 3 relevant classes.

Finally, the two machine learning approaches can also be compared with respect to their computa-
tional performance. All the illustrated experiments were run on a simple laptop, using only CPU
processing, with a 16GB 1600Mhz RAM and a 2,8GHz Intel Core i7 processor.

In analyzing the color-based model, we need to take into account the image pre-processing time to
extract the color features (1.2 second/image), the model building time (10 minutes for the whole
training set) and the classification time for new images of the test set. The training phase (pre-
processing + model building) globally takes 7 hour and 30 minutes for 22,000 images; since the
time to predict a single image is negligible (0.0003 seconds/image), we can say that the classification
phase requires only the time to extract the color features, which is 1.2 second/image.

For the DCNN model, the total training time is around 2 hours, including both the creation of
bottlenecks and the learning steps, while the prediction time is 0.6 seconds/image. Those number
show that, also from a performance point of view, the DCNN model is to be preferred with respect
to the color-based approach, both for the training phase (in which we “save” the time required
by Google to build the Inception-v3 model on the ImageNet dataset) and for the prediction phase
(which is roughly one half of its competitor’s).

6. HUMAN VS. MACHINE COMPARISON

Given the results obtained in the previous sections, we deepen our investigation by having a closer
look at the classification confidence measures. On the one hand, we further analyse the similarities
between the different approaches, to understand if they show the same “behaviour”, so to answer
the question “do humans and machines find the same images easy/hard to classify?”. On the other
hand, we evaluate a technique to address the scenario-specific objectives outlined in Section 3, so
to answer the question “can we improve precision (at the expense of recall) on some of the relevant
classes?”.
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6.1. Comparing Human-Machine Classifications on Confidence Measures

When applying a machine learning model to classify new data, it usually not only outputs the pre-
dicted class, but it also returns a value between 0 and 1 that represents the “confidence” of the
algorithm about the given classification. This confidence score can be interpreted as the “difficulty”
to classify the input data. Both the color-based model and the DCNN model give us this confidence
score. On the other hand, Night Knights aggregates the contributions from the different players to
output the image classification; given our aggregation algorithm, which depends on both the level
of agreements between players and the reliability of each contributor, we can say that the higher the
number of players required to classify an image, the less “confident” the human classifiers, hence
the more “difficult” the classification (cf. also Section 4 and Figure 3). Therefore we analyse the
collected data to compare the machine learning approaches to the human computation experiment:
do humans and machines find the same images easy/hard to classify?

To find an answer, we take the test set and we divide it in two groups: an agreement set, which
contains the images that were classified in the same way by Night Knights players and by the two
Machine Learning classifiers, and a disagreement set, which contains all other images which there-
fore were either classified in the same way by only 2 out of 3 methods, or were attributed to 3
different classes by the 3 methods. The agreement set contains 79% of the images, thus the dis-
agreement set includes the remaining 21%. Then we apply the t-test9 on the difference of means
between the “confidence measures” of the 3 methods in the agreement/disagreement sets: if a dif-
ference is statistically significant, it means that that classifier “distinguishes” between easy- and
hard-to-classify images.

Table 4. Statistically relevant difference in means on confidence measures between agreement
and disagreement sets

agreement set disagreement set t-test p-value

DCNN confidence 0.96 0.81 <10-16

Color confidence 0.90 0.59 <10-16

# of NK players 5.6 8.0 <10-16

The results are presented in Table 4. All the 3 mean differences are statistically significant as tes-
tified by the p-values of the corresponding t-tests. This means that humans and machines “agree”
on the difficulty of the image classification: when the machine learning classifiers give a high con-
fidence score, the human computation method requires a smaller number of players to reach an
agreement, and vice versa.

Analysing the disagreement set, we notice that the number of images that are classified the same
by the two machine learning algorithms and differently by the human computation approach is
negligible (less that 1%); considering only the images classified equally by the two automatic clas-
sifiers, the Rand/Adjusted Rand Index computed with the respective Night Knights classification

9The t-test usually assumes the populations to be normally distributed, which is not our case; however,
the t-test is reliable in case of large samples, as per our populations; in any case, the Wilcoxon and the
Kolmogorov-Smirnov tests confirm the statistically significant difference in means.
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is 0.98/0.96. Therefore we can conclude that, when the two proposed machine learning classifiers
agree, it is highly probable that humans would also agree on the same classification.

As regards the other images of the disagreement set, Figure 7 show some pictures that were differ-
ently classified by the three approaches (and the respective confidence measures); indeed, we can
say that it is difficult or even impossible to tell which should be the “true” classification, since they
are all mixed images. As explained in Section 3, for the purpose of measuring the light pollution
effect, those images are are not of interest, exactly because they are mixed in content; therefore, we
can safely discard all images that were classified differently by the two automatic approaches.

(a) Night Knights: STARS 7 users.
DCNN: AURORA 0.54 confidence.

COLOR: CITY 0.70 confidence

(b) Night Knights: AURORA 8 users.
DCNN: ISS 0.66 confidence.

COLOR: NONE 0.37 confidence

Figure 7. Examples of images classified in different classes by the three methods with low
confidences and high number of players

6.2. Improving Precision at the expense of Recall with Confidence Scores

Given the previous analyses, we test if the confidence score of machine learning classifiers can be
further exploited to improve classification precision, especially in the classes we are more interested
in. In other word, we observe how precision (and recall) vary, by putting a minimum threshold on
the confidence score and discarding all classifications with a confidence score smaller than the
threshold.

Figure 8 shows the case of STARS and BLACK classes by varying the confidence score threshold
of the DCNN model between 0.25 and 0.95. We observe that precision monotonically grows with
the confidence threshold; of course, the higher the threshold, the more images get discarded and the
lower the recall (which indeed monotonically decreases). We don’t make this analysis on the CITY
class, since we already got very high levels of precision (cf. Section 5).

To increase the precision on STARS images to 80%, we can accept the classifications with a con-
fidence score greater than 0.85, decreasing recall to 45%. Using the same threshold for BLACK
images, we can increase the precision to over 90%, correspondingly reducing recall to 75%. The
recall cut can seem too high, but that should be interpreted in context: the images we are leaving out
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(a) (b)

Figure 8. Precision and recall values varying the threshold on DCNN-model confidence score

are the most confusing ones, which may not be of particular importance anyway, as they probably
contain several contrasting elements at the same time.

The same analysis conducted on the color-based model leads to the same results, with precision/re-
call monotonically increasing/decreasing with the confidence score threshold; however, since recall
on STARS images was already very low in the color-based model, the gain in precision would come
at the expense of only a few classified images.

7. CONCLUSIONS

In this paper, we compared a Human Computation approach and two Machine Learning methods
to classify images taken on board of the ISS, in order to employ the relevant part of them for a
measurement and quantification of the light pollution issue.

The Human Computation approach was implemented through a Game with a Purpose and a re-
lated competition, which allowed us to collect a set of ∼26,000 labelled images; those images were
then exploited to train two different Machine Learning classifiers, one based on the Random Forest
algorithm with manually-identified color-based features and one based on Deep Convolutional Neu-
ral Networks, previously trained on a large image dataset and adapted through a transfer learning
approach to our scenario (see upper part of Figure 9).

Once trained on the Human Computation results, the Machine Learning approaches worked well
and showed a classification “behaviour” quite similar to the one of the GWAP players. On the other
hand, the Human Computation system was very effective in collecting labels from human classifiers
in quite a short time, even if its long-term sustainability is unknown.

From the point of view of our light pollution objective, CITY images – useful to monitor artificial
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illumination levels on Earth – were automatically classified with high precision, while BLACK and
STARS pictures – used for light pollution measurement calibration – were more difficult to predict;
nonetheless, we demonstrated that further analysis based on confidence scores can improve preci-
sion and that even mixed pictures can be successfully employed to identify stars and constellation
of known brightness.

unlabelled 
images

Human 
Computation 

(NK)

labelled 
images

new 
image

Machine 
Learning 
Training

Color-based 
model

DCNN 
model

Machine 
Learning 

Prediction

Color-based 
prediction

DCNN 
prediction

agree?
classified 

image

discard or 
other analysis

yes

no

Figure 9. Proposed general approach for image classification

Therefore, we think that, in the long term, a solution to our light pollution-related image classifi-
cation problem can follow the process illustrated in Figure 9, mixing and combining the different
approaches: the Human Computation can be only used to create the training set for Machine Learn-
ing approaches; the trained models can then be run in parallel on new unlabelled images to get their
respective classifications (and related confidence scores). When the two Machine Learning classi-
fiers agree on the image classification, this can be quite safely considered the “true” classification
result; when they disagree, the image can be either completely discarded or further analyses can be
performed. In the latter case, we think it useless to put those images again in our Human Computa-
tion workflow – both because of the unpredictable time to obtain a human classification and because
of the concordance between the three methods on prediction “difficulty”, as shown in Section 6; the
classification of those images can come either from a further elaboration on confidence scores or
from a human expert or from another “oracle”, as in an active learning setting (Settles, 2012).

The above conclusions, however, should not be considered as applicable to any other classification
case, because they reflect both the specificity of our photos and the light pollution research goal: as
we explained in Section 3, the objective was to get high precision/recall for CITY pictures and high
precision for STARS and BLACK images, while mixed images were of no value.

In other cases, it could be worth to adopt an iterative process in which all images with different
automatic classifications are resubmitted in a feedback loop to humans, possibly experts. In this
way, the expert-classified images could be used to retrain the classifiers, so to improve their classi-
fication power. In our case, such an iterative solution would not bring any substantial benefit to the
classification result for the above-mentioned reasons.

Moreover, with respect to mixed images, in some cases it could be worth to keep multiple classifi-
cations, i.e. allowing two or more categories for each picture. In those cases, alternative approaches
could be adopted, like keeping all classifications with a confidence value higher than a given thresh-
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old or defining additional mixed categories to merge two or more basic categories.
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